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of De Alfaro, Fubini and Furlan in the holographic direction. We show that most physical

requirements, including the introduction of harmonic traps, can be realized with exact

AdS metrics, but without any need for exotic matter sectors in the bulk dynamics. This

Hamiltonian picture can be used to compare directly with many-body spectra of fermions

at unitarity on harmonic traps, thereby providing a direct physical interpretation of the

holographic radial coordinate for these systems. Finally, we add some speculations on

the dynamical generation of mass gaps in the AdS description, the resulting quasiparticle

spectra, and the analog of ‘deconfining’ phase transitions that may occur.
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1. Introduction

A proposal for an holographic realization of systems with nonrelativistic conformal sym-

metry (the so-called Schrödinger group)[1, 2] was put forward in a couple of interesting

recent papers [3, 4]. The natural area of application of these constructions would be that

of many-body systems with interacting Hamiltonians of the form

Hψ = −
∑

a

1

2ma
ψ† ~∂ 2 ψ −

∑

a,b,c,d

Cabcd ψ
†
aψ

†
bψcψd , (1.1)

where the latin indices stand for internal degrees of freedom, such as spin or flavor species

and the C’s define a set of running couplings (see also [5]). The Schrödinger group classifies

fixed points, either ultraviolet (UV) or infrared (IR) of these microscopic Hamiltonians,

and characterized by a spectrum of scaling composite operators built from the elementary

fields ψa (cf. [6, 7]).

The analysis of nontrivial fixed points may be accessible via traditional vector-like

large Nf limits, in analogy with the Gross–Neveu or CPN models. For example, one may

take flavor indices furnishing an internal O(Nf ) or Sp(2Nf ) symmetry of (1.1) (cf. [8, 9]).

In an appropriate large-Nf limit certain composite operators may become ‘free’, such as

Oψψ ∼ ∑

a,b dabψaψb, with dab an invariant tensor of the flavor group, or operators built

from various Noether currents. The operators are free in the sense that three and higher

point functions vanish as positive powers of 1/Nf as Nf → ∞, whereas the anomalous

dimensions are finite and calculable in the same limit, through a convenient resummation
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of Feynman diagrams (see [10] for a recent analysis of this sort). These resummations are

controlled by an effective coupling parameter, ceff = CNf that is kept fixed in the large

Nf limit, much like the similar situation with the ’t Hooft coupling of large N Yang–

Mills theories. In this context, one expects the holographic description to be a good

approximation when ceff ≫ 1, so that the radius of curvature of the background geometry

becomes small for large ceff .

Such holographic picture would work similarly to that of relativistic O(Nf ) models, as

in Ref. [11]. According to the standard AdS/CFT rules [12], there must be a bulk field φ

acting as a source of each ‘free’ composite operator Oφ. Correlation functions of scaling

operators are computed in terms of boundary Green’s functions of φ with bulk interactions

controlled by couplings suppressed by powers of 1/Nf . At Nf = ∞ the bulk dynamics

becomes free, and the mass parameters of φ control the spectrum of conformal weights

∆(Oφ). The conformal group itself is realized as an isometry group of the holographic

background. In principle, the kinematical structure can be defined even for finite Nf , with

no considerations of a large Nf limit [3, 4], provided one is prepared to face a strongly

coupled problem in the bulk.

In this paper we develop the Hamiltonian picture of the models introduced in Refs. [3,

4]. In section 2 we begin by reviewing the construction of Refs. [3, 4] and point out some

interesting modifications of detail. In section 3 we find the single-particle bulk Hamiltonian

of a bulk bosonic field and encounter the De Alfaro, Fubini, Furlan system [13]. In the

process we emphasize that all physical results can be obtained from an exact AdS bulk

metric, with no extra matter required. We also show how to describe the harmonic trapping

in this system and point out a fully geometrical interpretation of the procedure that involves

analytic continuation of a certain topological AdS black hole. We end in section 5 with

some speculations regarding applications which are naturally suggested by the Hamiltonian

methods developed in this paper. In particular we consider a matching to harmonically

trapped fermions at unitarity, as well as hypothetical patterns of quasiparticle spectra in

models with dynamical mass gap generation. Finally, we end with our conclusions and

open questions raised by this work.

While this paper was being prepared for publication, the recent paper [14] was posted,

containing some overlap with our findings, particularly in what regards the emphasis on

using pure AdS constructions, without any exotic matter sectors supporting the deformed

metrics of [3, 4].

2. Bulk metrics with Schrödinger symmetry

Following [3], the Schrödinger algebra in d spatial dimensions can be conveniently seen as

a projection of the full relativistic conformal algebra in d+ 2 spacetime dimensions, down

to a subgroup that leaves fixed a light-cone momentum p+. In fact it is not possible to

embed the Schrödinger group into the conformal group with the same number of spatial

dimensions [15, 16]. See also [17]. This suggests that the appropriate metrics can be

obtained as a projection of an AdSd+3 space. Starting from the Poincaré patch of AdSd+3
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spacetime with curvature radius R

ds2 =
r2

R2
(−2dx+dx− + d~x 2) +

R2

r2
dr2 (2.1)

in an appropriate light-cone frame, the idea is to project the dynamics onto the sector with

fixed eigenvalue of the light-cone momentum p+ = ∂/∂x−. Interpreting now x+ = t as a

time coordinate, we rewrite the previous metric as

ds2 =
r2

R2
(−2dt dξ + d~x 2) +

R2

r2
dr2 , (2.2)

where we have renamed x− = ξ. The generator or time translations p− = i∂t = H is a

Hamiltonian, and one realizes the full Schrödinger group in terms of those isometries of (2.2)

that leave the ξ-momentum p+ = −i∂ξ = M fixed and interpreted as a mass parameter. A

quantization of the mass parameter is realized by a compactification of the x− = ξ direction

on a light-like circle. The resulting isometry group includes the full Galilean group in d

spatial dimensions as a subgroup, together with an SL(2,R) subgroup generated by the

Hamiltonian, H, a dilation generator D, and a special conformal transformation C.

We will find it convenient to follow the parametrization in [4] and consider a more

general set of deformations of (2.2), labeled by the so-called ‘dynamical exponent’ z:

ds2 = −2γ2 r
2z

R2z
dt2 +

r2

R2
(−2dt dξ + d~x 2) +

R2

r2
dr2 , (2.3)

where γ2 is a positive real number. The case z = 2, with the normalization γ2 = 1 was the

main subject of analysis in Ref. [3]. The isometries of these deformed metrics include the

Galilean group in d dimensions, as well as a dilation symmetry

(t, ~x, r, ξ) −→ (λz t, λ ~x, λ−1 r, λ2−z ξ) . (2.4)

The Schrödinger group arises in the particular case z = 2, and includes an additional

generator of special conformal transformations. A priori, any model with a fixed quantized

mass spectrum, M = −i∂ξ, breaks explicitly all z 6= 2 dilations, suggesting that only

z = 2 metrics are physically relevant for the purposes of this paper. However, one of

our main results is the recognition that the metric (2.3) with z = γ2 = 1 is a valid

background supporting the full Schrödinger group at the quantum level, at least in the free

approximation of the bulk degrees of freedom. This special background will have peculiar

geometrical properties: it is nothing but pure AdS and a suitable generalization of it will

be seen to provide the dual of the system placed in a harmonic potential, while remaining

pure AdS. That the z = 1 metric is pure AdS can be seen by starting from the AdS metric

in Poincaré coordinates

ds2 =
r2

R2
(−dτ2 + dχ2) +

R2

r2
dr2 +

r2

R2
d~x 2 (2.5)

and making the change of coordinates

t =
χ− τ

5
1

4

, ξ =
−λ+χ+ λ−τ

5
1

4

(2.6)
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with λ± = 1
2

(

1 ±
√

5
)

. Then the metric becomes

ds2 =
r2

R2
(−dt2 − 2dtdξ) +

R2

r2
dr2 +

r2

R2
d~x 2 . (2.7)

A second important lesson of the Hamiltonian formalism will be that the value of γ2

for z = 2 metrics is largely irrelevant for physical purposes. Indeed, in practice one may

smoothly set γ = 0 and work with the exact AdS background (2.2), without the need for

exotic compensating matter sectors that would support the deformed metrics with γ2 > 0.

Therefore, for the purposes of this paper we are mostly interested in the z = 1 = γ2 metrics,

together with the undeformed pure AdS metrics γ2 = 0.

3. Energy spectrum

We shall model bulk degrees of freedom in terms of a complex, minimally coupled scalar

field of mass m, in the free approximation, with action

Sφ = −1
2

∫

dd+3x
√−g

(

gµν∂µφ
∗∂νφ+m2φ∗φ

)

. (3.1)

Our reduction procedure will be imposed by compactifying the ξ direction on a circle

of radius 1/M , and subsequently projecting all degrees of freedom onto the sector with

fixed ξ momentum −i∂ξ = M . Alternatively, we may compactify on a circle of radius 1/µ

and project onto the sector with ξ-momentum M = Nµ, with a positive integer number,

N , acquiring the interpretation of a conserved particle number. In either case, working

with (3.1) the procedure boils down to imposing a restriction to field configurations of the

form1

φ(t, ξ, r, ~x ) = eiMξ β(r)ϕ(t, r, ~x ) , (3.2)

where β(r) is an appropriate rescaling function that we include for convenience. For a

metric as general as

ds2 = −2A(r, ~x )dt2 − 2B(r)dξdt +G(r)dr2 + F (r) d~x 2 , (3.3)

with arbitrary ~x dependence on the time-time component, insertion of the ansatz (3.2) in

the action with

β(r) =
(

4π2B(r)F (r)d
)−1/4

(3.4)

yields the action of a non-relativistic quantum mechanical system

SM = −
∫

dt ddx dρ

[

1

2
(−iϕ∗∂tϕ+ i∂tϕ

∗ϕ) +
1

2M

(

|~∂ϕ|2 + |∂ρϕ|2
)

+ U(ρ, ~x ) |ϕ|2
]

,

(3.5)

where we have defined a new radial coordinate ρ that solves

dρ = dr

√

G(r)

B(r)
, (3.6)

1Dynamical reductions of this type were studied in [18].
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and an effective nonrelativistic effective potential U given by

U(ρ, ~x ) =
m2

2M
B(ρ)+M

A(ρ, ~x )

B(ρ)
+

1

8M
∂2
ρ log

(

B(ρ)F (ρ)d
)

+
1

32M

[

∂ρ log
(

B(ρ)F (ρ)d
)]2

.

(3.7)

3.1 Conformal quantum mechanics

We may now turn to the particular case of the family of metrics with Galilean invariance

(2.3) and we find an associated Hamiltonian

H =
~p 2

2M
− 1

2M

d2

dρ2
+

(d+ 1)(d+ 3) + 4(mR)2

8Mρ2
+ γ2M

(

R

ρ

)2z−2

, (3.8)

where ~p = −i~∂ is the momentum in the spatial coordinates ~x and r = R2/ρ. For the

Schrödinger invariant case, z = 2, we see that the total Hamiltonian consists on a sepa-

rated free part, for a particle of mass M , and an extra term coming from the holographic

coordinate and featuring a well-known system, i.e. the conformal quantum mechanics stud-

ied in Ref. [13]:

Hz=2 = H~x +Hρ(b2) , (3.9)

with H~x = ~p 2/2M and Hρ(b) given by

Hρ(b) = − 1

2M

d2

dρ2
+

b

2Mρ2
, (3.10)

parametrized by a dimensionless coupling constant, b.2 For z = 2 we have

b2 =
(d+ 1)(d + 3)

4
+ (m2 + 2γ2M2)R2 . (3.11)

We see explicitly that the effect of γ2 reduces to a renormalization of the scalar field mass

from m2 to m̄2 = m2 + 2γ2M2.

At this stage, we meet a surprise, since the case z = 1, a priori not enjoying a manifest

Schrödinger symmetry, does split in the same manner as the z = 2 case, up to an additive

redefinition of the Hamiltonian. We find

Hz=1 − γ2M = H~x +Hρ(b1) , (3.12)

with

b1 =
(d+ 1)(d+ 3)

4
+ (mR)2 . (3.13)

Incidentally, it is interesting that the required additive shift of the Hamiltonian is just the

rest mass for the particular case γ2 = 1. The crucial property of the conformal Hamiltonian

Hρ = p2
ρ/2M + b/2Mρ2 is that it generates an SL(2,R) group when combined with the

generator of dilations, Dρ = 1
2 (ρ pρ + pρρ), and special conformal transformations Cρ =

1
2 Mρ2.

2Notice that the value of the mass in Hρ is immaterial, since we can rescale it by a rescaling of ρ, a

consequence of the conformal character of this system.
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Since the free Hamiltonian H~x, together with D~x = 1
2 (~x · ~p+ ~p · ~x) and C~x = 1

2 M |~x|2,
generates a commuting SL(2,R) group, we find that the full spectrum is acted on by the

SL(2,R) generated by

H − γ2Mδz,1 = H~x +Hρ , D = D~x +Dρ , C = C~x + Cρ ,

and both the z = 2 and the z = 1 systems exhibit full Schrödinger symmetry at the

quantum level. The action of the dilation of the quantum SL(2,R) group on the coordinates

corresponds to (2.4) with z = 2. However this dilation transformation is not an isometry

of the z = 1 metric, so that we cannot expect it to survive local interactions in the bulk.

We will return to this issue at the end of section 3.3.

In both situations the dynamics of the holographic direction contribute a continuous

spectrum of excitations which are well-contained in the UV regime (r → ∞ or ρ→ 0) since

the potential diverges there, and accumulate at the IR end, as the conformal potential

vanishes in the r → 0 limit. This situation is analogous to the behavior of a relativistic

conformal field theory in infinite volume, as obtained from the study of bulk dynamics on

the Poincaré patch of AdS.

The form of the radial potential suggests that the appropriate UV/IR correspondence

in this model is ω ∼ 1/Mρ2, where ρ is the radial variable appearing in (3.10) and ω is a

physical quantum of energy. If we formally impose an infrared cutoff in the system, say at

ρ ∼ Lρ, the spectrum at high energies will discretize in momentum modes pρ ∼ 2πnρ/Lρ.

This means that the high-energy density of states gets a contribution from the holographic

direction as an extra dimension of length Lρ. We will dwell on the significance of this fact

at the end of this paper.

For z < 1, the non-conformal term in the effective potential of (3.8) grows at large ρ

and sets a mass gap in the system, in analogy with similar deformations in the so-called

AdS/QCD models.

3.2 Trapping the system

A standard strategy at discretizing the spectrum in standard AdS/CFT models is to put the

system on a finite volume. If the procedure is carefully chosen, the resulting Hamiltonian

may still enjoy useful constraints from the conformal symmetry. In standard AdS/CFT

models, this happens when putting the CFT on a spatial sphere of constant curvature,

whose Hamiltonian is proportional to the dilation operator in flat Minkowski space, hence

one can equate energies on the sphere to conformal dimensions of local operators on the

hyperplane [19].

There is an analogous construction in systems with non-relativistic conformal symme-

try [20]. Confining the system to a harmonic trap of frequency Ω corresponds to adding

the potential

Vtrap =
1

2
MΩ2|~x|2 .

Hence, from the explicit form of the generator of special conformal transformations for a

Schrödinger invariant system we learn that

Htrapped = Huntrapped + Ω2 C . (3.14)

– 6 –
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The SL(2,R) group can then be used to obtain exact properties of the spectrum such as its

discrete gap and a number of virial theorems for certain expectation values (cf. Ref. [21]).

Furthermore, it can be shown that the spectrum of Htrapped sets the spectrum of conformal

weights of local operators in the untrapped system, i.e. for each local conformal operator

in the untrapped system we have an energy eigenstate of the harmonically trapped system,

|O〉, whose energy satisfies

EO = Ω∆O , (3.15)

with ∆O the conformal weight (eigenvalue of the dilation operator) of the scaling operator

O (see [20]). For the model induced by the non-relativistic AdS/CFT correspondence

studied here, the full generator of special conformal transformations can be written as

C = C~x +Cρ =
1

2
M |~x | 2 +

1

2
Mρ2 , (3.16)

so that

Htrapped =
~p 2

2M
+

1

2
MΩ2|~x|2 +Hρ(b) +

1

2
MΩ2ρ2 , (3.17)

and we see that the prescription (3.14) induces naturally the corresponding ‘trapping’

in the holographic coordinate ρ, with the same characteristic frequency. Notice however

that a rescaling of the radial coordinate ρ → λρ induces an effectively rescaled mass

M2
λ = λ2M and consequently the trapping in the holographic variable corresponds to a

potential 1
2 M

2
λΩ2ρ2. Hence, we can still change the effective mass of the radial Hamiltonian

without changing the trapping frequency.

It remains to show how to induce the harmonic trapping at the level of the geometrical

description. Going back to (3.7) and setting B(r) = F (r) = 1/G(r) = r2/R2 = R2/ρ2,

we may now use the fact that all the ~x dependence in the effective potential U(~x, ρ) is

controlled by the value of the time-time component of the metric A(~x, ρ). In the absence

of an explicit ‘external’ potential we have A(r) = γ2(r/R)2z and, adding the perturbation

δA(~x, r) =
r2

R2

1

M
δU(~x, ρ) , (3.18)

generates a potential term on the effective Hamiltonian δU(~x, ρ). The dynamics of the

‘radial problem’ remains decoupled from the standard spacetime degrees of freedom for all

potential deformations of the form

δU(~x, ρ) = V (~x ) + v(ρ) , (3.19)

with otherwise arbitrary functions V and v. The SL(2,R) covariant harmonic trap is

induced by quadratic deformations with the same coefficient: V (~x ) = 1
2 MΩ2|~x |2 and

v(ρ) = 1
2 MΩ2ρ2.

Harmonic trapping is a rather realistic situation in actual experiments involving cold

atoms [22, 23]. From the theoretical point of view it has the additional interest of being

exactly solvable. Indeed, the Hamiltonian

Hconformal trapped = − 1

2M

d2

dρ2
+

b

2Mρ2
+

1

2
MΩ2ρ2 (3.20)
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is diagonalized by eigenfunctions

fn(ρ) = ρν+
1

2 Lνn(
√

2MΩρ2) e−MΩρ2/
√

2 , (3.21)

where ν is the real positive solution of

ν2 = b+
1

4
(3.22)

and Lνn is a generalized Laguerre polynomial. The corresponding spectrum of eigenvalues

is

εq = Ω(ν + 1 + 2q) , q ∈ Z+ . (3.23)

These formulae assume that ν2 > 1. For 0 < ν2 ≤ 1, corresponding to −1/4 < b ≤ 3/4

and including some cases of attractive potentials for negative b, there are two possible

normalizable solutions at ρ = 0. One is the function in (3.21), and the other is the same

function with ν → −ν. The spectrum constructed on top of this second branch of solutions

is given by (3.23) with the same redefinition ν → −ν. 3

These two possible quantizations of the system are the nonrelativistic incarnation of a

well known instance in the standard AdS/CFT correspondence [24, 25]. Going back to the

bulk parameters, the two inequivalent quantizations correspond to the range in effective

masses

−
(

d+ 2

2

)2

< (mR)2 ≤ 1 −
(

d+ 2

2

)2

, (3.24)

where m2 = m2 + 2γ2M2δz,2. The lower limit on m2 allows for tachyonic bulk fields in

a finite range of masses. This tachyonic bound coincides exactly with the Breitenlohner–

Freedman bound of AdSd+3 (cf. [26]). Since we define the nonrelativistic AdS/CFT cor-

respondence as a reduction of the higher-dimensional AdS/CFT map, we find this result

rather satisfying. Violating the Breitenlohner–Freedman bound in this context, i.e. continu-

ing to b < −1/4, makes the conformal potential too strongly attractive and the Hamiltonian

problem is not selfadjoint (cf. [27]).

The full spectrum of Htrapped is given by

E±
~n,q = Ω

(

d

2
+

d
∑

i=1

ni + 2q + 1 ± ν

)

, ni, q ∈ Z+ (3.25)

where the term d/2 comes from the zero-point energy of the d-dimensional oscillator in the

~x coordinates and the (−) sign only applies for 0 < ν2 < 1. Using now the general rule

(3.15) we have a spectrum of operator dimensions

∆±
~n,q =

d
∑

i=1

ni + 2q +
d+ 2

2
± ν , ni, q ∈ Z+ , (3.26)

3The solutions with asymptotics ρ
1

2
−ν are sometimes referred to as ‘resonant’. Even if they are normal-

izable on ρ ∈ [0, +∞) for 0 < ν2 < 1, their first derivative is not. Hence, the kinetic energy has divergent

expectation value in this branch of solutions, as has the potential energy, the two divergences cancelling

out to give a finite total energy.
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with the ~n = q = 0 cases corresponding to the conformal primaries studied in [3, 4] in

terms of the two-point functions. In particular, the two branches of quantum states in

the Hamiltonian formalism, given by the analytic continuation ν → −ν for 0 < ν2 < 1

correspond to the two branches of boundary conditions studied in [3], with the associated

conformal weights ∆± = ∆(±ν).

3.3 A purely geometrical interpretation of the harmonic trapping

In this section we provide a very interesting geometrical interpretation of the special case

z = 1, which shows full Schrödinger symmetry at the quantum level. It turns out that the

z = 1 metric, deformed with harmonic trapping, V (~x ) = 1
2 MΩ2|~x |2, v(ρ) = 1

2 MΩ2ρ2, can

be written as

ds2 = −
(

r′ 2

R2
+
a2(r′ 2 − a2)

R6
|~x |2

)

dt′ 2 − 2
r′ 2 − a2

R2
dξ′dt′ +

R2r′ 2dr′ 2

(r′ 2 − a2)2
+
r′ 2 − a2

R2
d~x 2 ,

(3.27)

under the change of variables Ω2 = 2a2/R4, r2 = r′2 − a2 and t =
√

2t′, ξ′ =
√

2ξ.

After a further double Wick rotation, ξ′ → itB and t′ → iθB , the resulting metric is

locally equivalent to that of a rotating, extremal, topological AdS black hole, studied in

Ref. [28]. Of course, the same applies to the non-rotating solution a = 0, corresponding

to the untrapped z = 1 background. Since these black holes are topological, the metric is

locally pure AdS spacetime, and thus solves Einstein’s equations with a simple cosmological

constant term, without any need for exotic matter that would support the NRAdS/CFT

metric, as was required in Refs. [3, 4].

It is also remarkable the fact that the correct SL(2,R) covariant harmonic trapping

with one and the same frequency on ~x variables and holographic variables arises as a result

of the ‘rotating black hole’ prescription. We regard this as analogous to a well known fact

in the standard AdS/CFT correspondence, where the bulk metric associated to the CFT

on a round sphere is given by the same AdS spacetime in global coordinates, rather than

restricted to the Poincaré patch.

Together with the realization that the physical impact of γ2 seems rather trivial in

the z = 2 models, this result suggests that a purely AdS construction is perhaps a more

economical and versatile approach to the NRAdS/CFT duality, making it, quite literally,

into an AdS/NRCFT duality. Notice however that the double Wick rotation makes the

black hole interpretation rather formal. In addition, the global identifications implicit in

(3.27) are completely different to those that define the topological black hole.

One of the advantages of the holographic descriptions lies in their specification of an

ansatz for the interactions that respect the relevant conformal symmetry. In particular,

in the context of a bulk scalar degree of freedom we can consider interaction terms of the

form

Sint ∼ gk

∫

dd+3x
√
−g |φ |2k , (3.28)

or straightforward local generalizations with covariant derivatives. These interaction terms

can be used to compute connected n-point functions of those operators Oφ dual to the

scalar field φ. Any such interaction term, written as a perturbation around the AdSd+3

– 9 –
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background metric, respects the conformal symmetry provided this symmetry is realized

as an isometry of the bulk metric. In this respect, we find a distinction between the z = 2

and z = 1 cases discussed so far. The quantum SL(2,R) algebra of the z = 1 system is not

realized as an isometry of the z = 1 deformed metric 4 so that generic bulk interactions of

the type (3.28) will break the Schrödinger group of the pure AdS construction.

The appropriate interpretation of the pure AdS constructions with z = 1 is then that

of approximate nonrelativistic fixed points, i.e. to the extent that the interactions (3.28)

are ‘small’ the Schrödinger symmetry will classify two point functions (the spectrum of

scaling dimensions) but will be weakly broken at the level of three-point functions. A

typical system with such a behavior is a microscopic model with a vectorlike large Nf

limit. In such class of models, the effective couplings satisfy a scaling law gk ∼ 1/Nk
f and

one can envisage situations with a fixed point at Nf = ∞, broken by 1/Nf corrections.

Conversely, any fixed point that is exact to all orders of the 1/Nf expansion will require

use of a background metric of type z = 2.

4. Towards applied AdS/NRCFT

In this final section we speculate on two possible applications of the previous formalism. We

comment on broad conceptual lines rather than the precise implementation of the program,

that is left for future work.

4.1 Matching to fermions at unitarity

Fermions at unitarity [29] are widely regarded as one of the main arenas of potential appli-

cations of these constructions. In this section we show that a rather precise correspondence

may be achieved between the bound state problem of unitarity fermions on a harmonic trap,

and the effective quantum mechanical system described in the preceding sections.

Following Ref. [21], the bound state problem of N particles of mass µ on a harmonic

trap of frequency Ω and satisfying the unitarity boundary conditions,

lim
~xi→~xj

ψ(~x1, · · · , ~xN ) =
cij

|~xi − ~xj|d−2
+O(~xi − ~xj) (4.1)

can be separated into a center of mass degree of freedom with coordinate ~x = N−1
∑

i ~xi,

mass M = Nµ, and free dynamics

HCM = −
~∂ 2

2M
+

1

2
MΩ2|~x |2 , (4.2)

plus an ‘internal’ Hamiltonian problem

Hint =
1

2µ

(

− d2

dρ2
+
dN − d− 1

ρ

d

dρ
+

Λ(N,d)

ρ2

)

+
1

2
µΩ2ρ2 , (4.3)

4This metric, being locally AdS, does have a large isometry group, at least locally, the point being that

the particular SL(2,R) group that is generated quantum mechanically is not part of it.
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in terms of a collective radial coordinate measuring the effective size of the trapped droplet:

ρ =

(

N
∑

i=1

(~xi − ~x )2

)1/2

. (4.4)

In (4.3), the quantities Λ(N,d) are the eigenvalues of the Laplacian on a proper submanifold

of the sphere, SdN−d−1, related to the relative angular variables, and with complicated

boundary conditions. The eigenvalues Λ(N,d) encode all the information on the contact

constraints (4.1) and therefore characterize those dynamical details of the system which do

not follow simply from the symmetries.

By a simple wave function rescaling, this system can be rewritten as the sum of a

harmonically trapped free Hamiltonian of mass M plus a harmonically trapped conformal

quantum mechanics of mass µ and coupling parameter

b = ν2 − 1

4
, (4.5)

with

ν2 = Λ(N,d) +

(

dN − d− 2

2

)2

. (4.6)

The resulting spectrum is known and takes the form

εq = Ω(ν + 1 + 2q) , q ∈ Z+ (4.7)

on the internal degrees of freedom. We can match this spectrum by a nonrelativistic

AdS construction with radius of curvature R = 1/M and a scalar field of bulk mass m

determined by

ν2 =

(

d+ 2

2

)2

+ (m̄R)2 = Λ(N,d) +

(

dN − d− 2

2

)2

, (4.8)

where m̄2 = m2 for the z = 1 model, or m̄2 = m2 + 2γ2M2 for the standard z = 2

background metrics. Of course, in the case z = 1 we must discard the additive constant

γ2M to the Hamiltonian.

We see that the crucially unknown parameter of the problem, the spectrum Λ(N,d),

gets mapped under the AdS/NRCFT correspondence to the local data of the bulk degrees

of freedom, in this case the mass spectrum of bulk fields, according to the precise corre-

spondence (4.8). In this respect, it is of great interest that the AdS prescription imposes a

lower bound on Λ(N,d) following from the Breitenlohner–Freedman bound:

Λ(N,d) > −
(

dN − d− 2

2

)2

. (4.9)

Finally, in this construction we obtain a rather direct physical interpretation of the

holographic radial coordinate ρ, as a mean-square radius of the droplet of cold atoms,

according to (4.4). The holographic direction accounts for the collective excitations of the

droplet.

– 11 –
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Figure 1: Plots of the potential U(ρ) = b
2Mρ2 + v(ρ) that one can induce on the holographic radial

coordinate ρ to model the generation of a mass gap. The red line presents the conformal potential,

with vanishing v(ρ), while the blue line represents the potential with non-zero v(ρ). On the left

plot we have the harmonic deformation, v(ρ) = 1

2
MΩ2

ρρ
2, while on the right we add a sharp wall

of finite or infinite height.

4.2 Quasiparticles

We have described the spectral properties of AdS/NRCFT systems either in free space or

trapped by appropriate harmonic potentials. In this section we comment on the more gen-

eral structures that can be expected when the conformal symmetry is broken dynamically

by infrared effects. More specifically, we consider metric deformations which respect the

Schrödinger group asymptotically as ρ → 0 (the UV regime) but induce a mass gap at

some low scale. The situation is analogous to that of harmonic trapping, but restricted to

the radial holographic dynamics, i.e. we keep the system untrapped in the ~x coordinates.

A natural candidate for such a dynamical mass generation is that of d = 2 systems with

attractive contact interactions, i.e. systems with delta-function interactions. In this case the

quantum-field theory description of bound states involves a classically scale invariant four-

fermion interaction ψ†ψ†ψψ, which undergoes logarithmic running at one loop. Energies of

bound states are formally similar to ΛQCD in the sense that they are non-perturbative in the

bare coupling of the delta-function potential. Thus, this is a natural arena to investigate

the geometrical realization of the mass gap.

While waiting for a better formulated model, there are two simple phenomenological

models for such mass-gap generation: a hard wall at some ρ = Lρ, imposing a vanishing

Dirichlet condition on wave functions at the hard wall, or a harmonic wall

v(ρ) =
1

2
MΩ2

ρ ρ
2 (4.10)

for which all of our previous results apply, except that the ~x system is not trapped and

SL(2,R) covariance is broken at the level of the full spectrum (for instance, one loses the

theorem (3.15), but maintains the exact results on the ρ-sector).

Expanding the dynamical field

ϕ(t, ~x, ρ) =
∑

α

fα(ρ)Ψα(t, ~x )

– 12 –
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in a complete basis of normalized eigenfunctions of the radial Hamiltonian

Hρfα(ρ) = εα fα(ρ) , (4.11)

we can now quantize the system regarding the bulk field as a local operator, leading to the

second-quantized non-relativistic Hamiltonian

Hfree =

∫

ddx
∑

α

Ψ†
α(~x )

(

−
~∂ 2

2M
+ εα

)

Ψα(~x ) . (4.12)

When the eigenvalue problem (4.11) has a discrete spectrum, the index α can be inter-

preted as a species index for a tower of ‘quasiparticle types’ in (4.12), with εα acquiring

the interpretation of ‘internal energies’ for each particle type. This means that these quasi-

particle types are to be interpreted as bound states, molecules, in complete analogy with

well-known relativistic constructions in which, for instance, the eigenvalues of the bulk

radial problem transmute into a tower of glueball masses, as viewed from the boundary

(cf. [30]).

The spectrum of internal energies is determined by the gap potential. In the case

(4.10) the spectrum of internal energies is evenly spaced, with step 2Ωρ, as in (3.23) and

(4.7). For a hard wall, the spectrum of internal energies has a high-energy asymptotics of

the form εα ∼ 4π2α2/2ML2
ρ, with α a positive integer.

Other situations can be contemplated. For instance, if the gap potential v(ρ) has a

minimun at ρ = 0 but asymptotes to a positive constant v∞ as ρ→ ∞, we have a discrete

spectrum of a finite number of quasiparticles with internal energies 0 < εα < v∞ followed

at higher energies by a continuum spectrum, as in the Schrödinger invariant model (see

Fig. 1).

One interesting piece of information that can be obtained from the knowledge of the

internal energies εα is the high-energy density of states. Assume for example that Ψ†
α in

(4.12) create bosons of internal energy εα, then the free energy of such a gas is given by

βF (β) = V
∑

α

∫

ddp

(2π)d
log

[

1 − e
−β

„

~p 2

2M
+εα

«

]

. (4.13)

If we simulate the mass gap by a sharp wall at ρ = Lρ, the internal energy spectrum is

given asymptotically by εα = (2πα)2/2ML2
ρ, with α a large integer number. Then, the

entropy will scale at high temperatures as

S(β) ∼ V Lρ(MT )
d+1

2 , (4.14)

that is, the tower of quasiparticles contributes like an effective extra spatial dimension of

size Lρ. On the other hand, if we use a harmonic trap of frequency Ωρ, the contribution of

the quasiparticles sum in (4.13) amounts to a factor of T/Ωρ, or equivalently to two extra

dimensions of effective length Leff = (MΩρ)
−1/2.

Local interaction terms of type (3.28) induce corresponding local interactions between

the quasiparticles. In particular, inserting the basic ansatz (3.2) into (3.28) and performing
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the ξ and ρ integrations we find effective interaction terms in the effective many body

Hamiltonian of the ‘molecules’:

H(k)
int ∼ gk

M

∑

α,··· ,β,···
Vα1,··· ,αk,β1,...βk

∫

ddx Ψ†
α1

(~x ) · · ·Ψ†
αk

(~x )Ψβ1
(~x ) · · ·Ψβk

(~x ) , (4.15)

where the contact interactions are determined by overlapping integrals

Vα1,···αk,β1,···βk
=

1

2π

∫

dρ
( ρ

R

)d−1
f∗α1

(ρ) · · · f∗αk
(ρ)fβ1

(ρ) · · · fβk
(ρ) . (4.16)

It would be interesting to delve further into the possible applications of this formalism.

5. Concluding remarks

In this work we have implemented the elements of the Hamiltonian picture for the proposed

AdS/RNCFT correspondence in Refs. [3, 4]. At the level of free bulk dynamics, we find

that the conformal symmetry is realized by a decoupled system in the radial holographic

coordinate, given by the conformal quantum mechanics of De Alfaro, Fubini and Furlan.

This analysis throws two important lessons. The first is the existence of background

metrics that realize the Schrödinger group at the quantum level, even in the absence of

the corresponding isometries. The second is that the deformations away from pure AdS

metrics have rather mild effects in the free bulk approximation, such as a simple mass

renormalization of scalar fields. This is certainly a welcome state of affairs, because the

matter systems suggested in [3, 4]) as supporters of the relevant metrics look rather exotic.

It would be interesting to study in a systematic way whether the mild effects of the γ2

parameter in (2.3) stay so ‘mild’ at the level of interactions, or when the bulk system

includes other types of matter, such higher spin modes. For example, contact interactions

of type (3.28) are independent of γ2, since this parameter drops from the expression of

the volume density
√−g. However, more complicated interactions with derivatives will

certainly be sensitive to γ2 and the question is whether the γ2 → 0 limit is smooth, so

that we can use pure AdS backgrounds to describe exact fixed points. Working with a

light-like compactification certainly calls for caution, regarding possibly singular quantum

effects associated to zero modes. The fact that one explicitly projects the theory onto a

sector of non vanishing momentum is perhaps enough to ensure that no such problems will

arise.

Having a Hamiltonian formalism allowed us to make contact with detailed Hamiltonian

results for the problem of fermions at unitarity in harmonic traps. We have seen that the

conformal quantum mechanics in the holographic coordinate is hidden in the standard

many-body bound state problem in terms of the effective Hamiltonian for the mean-square

size of the trapped droplet, thus giving a direct interpretation of the holographic coordinate

in the physical system of interest. On the other hand, the main computational challenge,

i.e. the determination of the Λ(N,d) spectrum, is simply reformulated in terms of the mass

spectrum of bulk fields. In the absence of a fundamental definition of the bulk theory

(such as the type IIB string theory in the case of N = 4 SYM), the holographic picture
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does not yet help in determining the Λ(N,d) coefficients. Perhaps one could contemplate a

background containing an explicit factor of the SdN−d−1 sphere, modded by an appropriate

discrete subgroup of O(dN − d), in such a way that the Λ(N,d) coefficients arise as direct

Kaluza–Klein contributions to scalar field masses.

At a more heuristic level, we have considered possible patterns for mass gap generation

by looking at particular deformed metrics where only the time-time component is affected.

This is enough to generate quite arbitrary potentials in the holographic coordinate, capable

of discretizing the spectrum of excitations. We have estimated the contribution of such

towers of quasiparticles to the thermal entropy and concluded that they mimic extra dimen-

sions. This is similar to the graviton gas contribution to the entropy of strongly coupled

CFTs in the standard AdS5 × S5 model, giving a band with entropy S(E)g ∼ (ER)9/10.

We know that this changes into a black-hole dominated entropy at energies in excess of

N2/R, where N2 is the number of ‘gluon partons’, into a law S(E)bh ∼ N2(ER)3/4, i.e. like

a four-dimensional plasma. In the canonical ensemble, the competition between these two

bands of states produces the Hawking–Page transition at Tc ∼ 1/R.

It is very interesting to ask what similar pattern would arise in the nonrelativistic

models at hand in this paper. The exactly analogous set up to the relativistic CFT on a

sphere is the model with an SL(2,R) harmonic trap. The full single particle spectrum is

given by

ω~n,q = Ω

(

d
∑

i=1

ni + 2q + ν +
d+ 2

2

)

. (5.1)

The associated free energy of the boson gas,

βF (β) =
∑

(~n,q)∈Zd+1

+

log
(

1 − e−βω~n,q

)

, (5.2)

yields a high-temperature scaling of the entropy S(T ) ∼ (T/Ω)d+1, corresponding to one

extra dimension. If the analog of a Hawking–Page transition would take place, we expect

Tc ∼ Ω and a phase at T > Tc well described by the ‘partonic’ degrees of freedom. If

the bulk field φ is dual to some composite operator of the form
∑Nf

a=1 ψaψ
a we have Nf

partons. The entropy of such gas in a harmonic trap is

S(T )partons ∼ Nf (T/Ω)d (5.3)

at high temperature. This means that a Hawking–Page transition occurring at T = Tc ∼ Ω

would have a latent heat of order Tc∆S ∼ ΩNf , which diverges in the largeNf limit. Hence,

such a transition would be first order and perhaps described by the nucleation of a black

hole, just like in the relativistic case. This would require introducing dynamical gravity into

the picture and completing the parameter dictionary so that the Planck length is related

to the AdS curvature by the relation

Rd+1

GN
∼
(

R

ℓP

)d+1

∼ Nf . (5.4)
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In this case, gravitational interaction vertices in the bulk scale naturally as inverse powers

of Nf since the effective low-energy expansion parameter would become GN/R
d+1 ∼ 1/Nf .

Finally, true deconfining transitions would occur in the models described at the end

of the last section, when the quasiparticles, or ‘molecules’, dissociate into the Nf partonic

‘atoms’. For example, in the model based on a sharp wall, with internal energy gap

∆ε ∼ 1/ML2
ρ. We can expect the critical dissociation temperature to be of this order,

Tdec ∼ ∆ε. The entropy of the molecular gas at this temperature is given by Eq. (4.14),

Smolecules ∼ V Lρ(MTdec)
d+1

2 ∼ V/Ldρ . (5.5)

On the other hand, the entropy of an ‘atomic’ gas with Nf species is

Satoms ∼ NfV (MTdec)
d/2 ∼ NfV/L

d
ρ . (5.6)

Again, we find a latent heat of O(Nf ) and we expect again a black-hole type description

for this transition, since Nf ∝ 1/GN. It should be interesting to dwell further on these

questions.

Finally, it would be important to go beyond the field-theoretical description of the bulk

system, and search for some embedding in string theory. In such a model, irrespectively of

its actual physical applications, we have a well defined spectrum of excitations with bulk

masses dictated by the fundamental theory (for example, in such a model any matching like

Eq. (4.8) would become a prediction rather than a fit). In this endeavor, the first step is

to search for supersymmetric generalizations of this system, for which the supersymmetric

generalization of conformal quantum mechanics, studied in [31], will certainly be crucial.

See also [32].
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[28] M. Bañados, A. Gomberoff and C. Martinez, Anti-de Sitter space and black holes, Class. and

Quant. Grav. 15 (1998) 3575 [hep-th/9805087].

[29] K.M. O’Hara et al., Observation of a strongly interacting degenerate Fermi gas of atoms,

Science 298 (2002) 2179;

C.A. Regal, M. Greiner and D.S. Jin, Observation of resonance condensation of fermionic

atom pairs, Phys. Rev. Lett. 92 (2004) 040403;

M. Bartenstein et al., Crossover from a molecular Bose-Einstein condensate to a degenerate

Fermi gas, Phys. Rev. Lett. 92 (2004) 120401;

M.W. Zwierlein et al., Condensation of pairs of fermionic atoms near a Feshbach resonance,

Phys. Rev. Lett. 92 (2004) 120403;

J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov and J.E. Thomas, Evidence for

superfluidity in a resonantly interacting Fermi gas, Phys. Rev. Lett. 92 (2004) 150402;

T. Bourdel et al., Experimental study of the BEC-BCS crossover region in Lithium 6, Phys.

Rev. Lett. 93 (2004) 050401.

[30] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[31] S. Fubini and E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984)

17.

[32] J.P. Gauntlett, J. Gomis and P.K. Townsend, Supersymmetry and the physical phase space

formulation of spinning particles, Phys. Lett. B 248 (1990) 288;

C. Duval and P.A. Horvathy, On Schrödinger superalgebras, J. Math. Phys. 35 (1994) 2516

[hep-th/0508079];

M. Henkel and J. Unterberger, Supersymmetric extensions of Schrödinger-invariance, Nucl.

Phys. B 746 (2006) 155 [math-ph/0512024];

M. Sakaguchi and K. Yoshida, Super Schrödinger in super conformal, arXiv:0805.2661.

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C41%2C203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C41%2C203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C086004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C086004
http://arxiv.org/abs/0706.3746
http://arxiv.org/abs/cond-mat/0607821
http://arxiv.org/abs/cond-mat/0612613
http://arxiv.org/abs/0706.3360
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://arxiv.org/abs/hep-th/9905104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB115%2C197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C144%2C249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C15%2C3575
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C15%2C3575
http://arxiv.org/abs/hep-th/9805087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C040403
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C120401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C120403
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C150402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C050401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C050401
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB245%2C17
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB245%2C17
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB248%2C288
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C35%2C2516
http://arxiv.org/abs/hep-th/0508079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB746%2C155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB746%2C155
http://arxiv.org/abs/math-ph/0512024
http://arxiv.org/abs/0805.2661

